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LETTER TO THE EDITOR 

Green function and phase-shift multiple-reflection 
theory for electronic surface states 

Marian Radny 
Institute of Experimental Physics, University of Wrociaw, ul. Cybulskiego 36,50-205 
Wroclaw, Poland 

Received 5 February 1990 

Abstract. A more unified approach to the Bohr-like quantisation condition for the existence 
of electronic surface states within the multiple-reflection theory is discussed. It consists 
in employing the path-integral method to construct a WKB-like Green function. Simple 
calculations of the local density of states for image-induced surface resonances are also 
presented. 

In the past few years the multiple-reflection (MR) theory originally developed by 
Echenique and Pendry [ 11 has been successfully applied to provide, predict and charac- 
terise a uniform picture of the crystal-induced (Shockley) and barrier (image)-induced 
electronic surface states in metals [2-4]. The present letter attempts to extend this 
approach applying the path-integral approximation method to construct a WKB-like 
Green function for a quantum well. To describe it, let us first present in brief the results 

A crystal is arbitrarily terminated at some plane zc  (figure 1). On this plane the 
of [l]. 

potential is the same as in the bulk crystal 

V c ( z )  = Vc,(z) + iVci i = (-I)@ (1) 
where Vci is a small imaginary contribution to the inner potential Vc and simulates 
damping effects in the crystal. Outside the adjustable image plane zB, the potential is 
assumed to have an image form VB(z) = [4(z - zi)]-', where corrugation effects are 
negligible, i.e., vB(r, E )  = VB(t, E )  and Im VB(t) = 0 for simplicity. For z smaller than 
tB the z-dependent surface potential is approximated by a constant value V .  If 
Rc = rcei@cand RB = rBei@B represent the reflectanceof the electron wave at thecrystal 
and surface barrier, respectively, the total amplitude of the wave after an infinite number 
of reflections is [ 11 

~ 1 -  rcrB exp{i[@c + @ B  + 2k(zB - z c ) ~ ~ n - i  (2) 
where k is defined inside the well and (using atomic units throughout) k = 
[2 (E  - V)]'/'. A pole in (2) corresponds to a bound surface state so the following 
condition must be satisfied 
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Figure 1. Potential profile of a semi-infinite crystal 
(2 < zc) subject to the image potential ( z  > zB); 
zi is the image plane. The surface states arise 
through multiple reflection between the ter- 
minating plane of the crystal and the surface 
barrier. 

Figure 2. Surface density of states n(z;  E )  for the 
image (broken curve) and for the step potential 
barrier(ful1curve);z = zc = zB = 0. Arrowsindi- 
cate the image-induced surface resonances. 

where n is an integer. The Bohr-like quantisation condition of the round trip phase 
accumulation @ (equation (4)) enables us to distinguish between barrier-induced ($ I8 )  
and crystal-induced ($Ic) surface states, depending on the phase factor governing the 
resonance condition. Equation (3) requires both the absence of damping processes 
(Im Vc = 01, and the energies E in a relative bulk band gap (rC = 1) as well as below the 
vacuum level (rB = 1). If E extends out of these ranges or inelastic processes are taken 
into account, the stationary condition (3) and ( 4 )  must be replaced by the weaker one 
[41 

11 - rCrB exp{i[@c + + 2k( zc  - zB)]>I2 + MIN. ( 5 )  

Quite recently the stationary condition has been used to determine the energy of 
overlayer states [5], where @c and 2k(zB - zc)  in equations (2)  and (4) represent the 
phase shifts at the substrate-adsorbate interface and across the adsorbed metal film, 
respectively. 

The purpose of this letter is to construct and to analyse a fixed energy Green function 
for a one-electron Hamitonian H in the position representation 

for zl, z 2  inside the well (figure 1>, and H = T + V,, where Tis the kinetic energy and 
V ,  the potential energy of the system. The idea is that the Green function ( 6 )  can be 
defined in the semi-classical approximation in terms of a sum over all possible paths 
which connect points z1 and z2 [6] 

where k ( z )  = [2(E - V ( Z ) ) ] ' / ~  is the local wavenumber defined inside the well, whilef, 



Letter to the Editor 4663 

are the factors associated with each path connecting z1 and z2. In a classically allowed 
region 

fm = exp(i1 2 1  J z 2  k ( z )  dzl ). 
Taking into account all possibilities of reflections at the boundaries (Rc, RB) and accord- 
ing to (7) the Green function for the quantum well may be expressed in the form 

G(z l ,  22; E )  = (i/2kn) (exp[ik(z2 - zl)] + RcRB exp{ik[2(zB - z c )  + z1 - z 2 ] }  
+ exp[ik(zB - z c ) ]  [Rc exp{ik[zl + z2 - (zB - zc)]} 

+ RB exp{-ik[zl + z2 - (zB - zc ) ] } ] )  (1 - RcRB exp[ik2(zB - zC)]}-' 
(9) 

where the geometric series has been summed. 
The discrete energy spectrum of the system is determined by the poles of the 

propagator G(zl,  z2; E )  [7] and for the energies E in the bulk band gap below the vacuum 
level E, 

lRcl = rc lRBl = T B  = 1 (loa) 

Rc = exP(i@c) R B  = exp(i@B) (lob) 

1 - exp{i[Gc + @ B  + 2k(zB - zC)]} = 0. (10c) 

hence 

and 

It is easy to see that the conditions (loa-c) for the existence of the true surface states 
are identical to those obtained from the MR theory ((2) and (4)). 

In the continuum part of the energy spectrum (allowed energy bands and a region 
above the vacuum level) the existence of bounded states is not connected with the 
singularity of (9). Hence, a quantity of considerable physical interest is the density of 
states determined by the imaginery part of the Green function. For z1 = z2 = z the local 
density of states (LDS) is defined as [7]  

n(z ;  E )  = -Im((zI(E - H)- ' /z)) /?G.  (11) 
Following from (9) and (1 l ) ,  the expression for the LDS in our system is 

n(z ;  E) = (1/2kn2) [I - (rCrB)* + rc ( I  + r ; )  cos(2k.z + c p C )  
+ r~{COS[2k(b - 2) - @ B ]  + ?$ ~ 0 ~ [ 2 k ( b  - 2) + @B]}] 

(12) x 11 - rCrB exp[i(Gc + @ B  + 2kb)1/ -~  

where b = zB - zc ,  while Rc and RB from (9) are replaced hy rcei@cand rBei@B, respect- 
ively. 

It is easy to see that the non-stationary condition in the MRapproach (4) is reproduced 
in (12) explicitly, i.e., the minima of (4) appear to be the maxima in the LDS. 

The Green function provides the appropriate theoretical tool for treating many-body 
effects (or lifetime effects), Im Vc # 0.  The one-electron Green function reads simply 
(see (1) and (6)). 

G(E) = ( E  - T - VC)--l = ( E  - T - Vc, - iVCi)-l (13) 
so that introduction of the imaginary component Vc, to Vc is equivalent to replacement 
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of E by E - iVci in the Green function for an undamped system, Im Vc = 0. In the 
formulation presented here the absorption effects of the crystal introduce an imaginary 
component into the phase of the crystal reflectivity cPc. With the use of linear approxi- 
mation the complex energy dependence of @c can be expressed in the form 

rc exp(i[Gc(E T iVci)]} = exp[i(@c + i(ln rc Vci d@,/aE)]. (14) 

Thus, the LDS function (12) describes the damped surface states inside the energy 
gap (Im V, # 0) and the surface resonances outside the gap. However, outside the 
energy gap an electron beam can lose flux due to diffraction processes, so that rc < 1 
even in the absence of the absorption effects. In this case the imaginary part of the phase 
shift +(E) in (14) is reduced to -In rc, where 

rc = [(ikY(zc) + yf(zc))/(ikY(zc) - Y'(zc))] < 1 (15) 

and Y represents the crystal wave function; the prime indicates differentiation [8]. 
Simple calculations of the local surface density of states (Im Vc = 0, equations (12), 

(14), (15) and (16)) have been performed for the one-interface model, i.e. z = zc  = 
zB = 0, and crystal parameters corresponding to the Al(001) face (4.41 eV-the work 
function, 11 eV-the Fermi level and 4.04 & . t h e  lattice constant). The wave function 
Y in (15) was determined from the two-band model (nearly free electron approximation) 
[2,4,9] and in the energy region outside the band gap the phase shift GC = constant 

In the vacuum the surface potential barrier in the simplest case can be determined 
[2, 41. 

as (rB = 1) 

@B/n= [3.4eV/(Ev - - 1 (16a) 

@B = 2 tan-'{-[(Ev - E)/E]'/2} (166) 

for the image potential and for the step potential barrier, respectively [2]. 
Results of the calculation are presented in figure 2. In the near vicinity of the energy 

gap (8.33-10.0) eV a characteristic E-'/' dependence of the surface LDS is conserved 
independently of the surface potential shape. The effect of the image potential on the 
LDS (broken curve in figure 2) becomes significant in the energy region above the energy 
gap up to the vacuum level Ev. Maxima on the LDS curve represent the image-induced 
surface resonances, while the inverse of the half-width of the peak is proportional to the 
lifetime of an electron in this state. As can be seen, the higher the energy of the resonance, 
the longer the lifetime of this state. 

To our knowledge, the LDS calculation performed within the extended phase-shift 
multiple-reflection theory presented above has not appeared in the literature before. 
The results obtained are in good agreement with the previous theoretical description [9] 
of the image-induced surface resonances measured recently in the inverse photoemission 
experiment [lo,  111. We believe that the more precise determination of the scattering 
characteristics of the crystal (R,) and the surface barrier (RB)  in the extended MR theory 
presented here may give a convenient and powerful method for theoretical investigations 
of a wide class of the electronic surface states in metals. 

This work was sponsored by the Polish Ministry of Education within the CPBP 01.08.A. 
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